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Abstract

We use two different hyperbolic subdiffusion equations with fractional time
derivatives (the generalized Cattaneo equations) to study the transport process
of electrolytes in media where subdiffusion occurs. In these models the flux
is delayed in a non-zero time with respect to the concentration gradient. In
particular, we obtain the formulae of electrochemical subdiffusive impedance
of a spatially limited sample in the limit of large and small pulsation of the
electric field. The boundary conditions at the external wall of the sample are
taken in the general form as a linear combination of the subdiffusive flux and
the concentration of transported particles. We also discuss the influence of the
equation parameters (the subdiffusion parameter and the delay time) on the
Nyquist impedance plots.

PACS numbers: 02.90.+p, 05.60.−k

1. Introduction

Subdiffusion occurs in systems where mobility of particles is significantly hindered due
to internal structure of the medium, as in porous media, gels or amorphous semiconductors
[1, 2]. The subdiffusion is characterized by a time dependence of the mean square displacement
of a transported particle 〈�x2〉 = 2Dαtα/�(1 + α), where Dα is the subdiffusion coefficient
measured in the units m2/sα and α is the subdiffusion parameter of a value within the range
0 < α < 1. For α = 1 one deals with the normal diffusion.

The subdiffusion has been recently extensively studied. While the phenomenon is
theoretically rather well understood, there are very few reported experimental investigations
(e.g. [1–8]). The method of impedance spectroscopy was used to experimentally study
transport in porous media such as nanopore electrode [3], cement [4–6], tooth enamel [7] and
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gels [8]. The theoretical analysis of subdiffusion impedance was presented by [9] who used
the following parabolic subdiffusion equation with fractional time derivative:

∂C(x, t)

∂t
= Dα

∂1−α

∂t1−α

∂2C(x, t)

∂x2
, (1)

where the Riemann–Liouville fractional time derivative is defined for α > 0 as [10, 11]
∂αf (t)

∂tα
= 1

�(n − α)

∂n

∂tn

∫ t

0
dt ′

f (t ′)
(t − t ′)1+α−n

,

and the integer number n fulfils the relation n − 1 < α � n. For α = 1, equation (1) converts
into the normal diffusion equation.

For the initial condition C(x, 0) = δ(x), where δ is the Dirac-delta function, the solution
of equation (1) (the Green’s function) has non-zero values for any x and t (t > 0). Thus, even
for small times, a finite amount of the substance exists at very large distances from the origin,
what can be interpreted as the infinite propagation velocity of some of the diffusing particles.
To avoid this ‘unphysical property’ Cattaneo derived the hyperbolic normal diffusion equation
for which Green’s function has non-zero values for finite x [12, 13]. The equation is based
on the assumption that the flux is delayed by time period τ with respect to the concentration
gradient. For many ‘typical systems’ (as the membrane one) it is hard to observe the difference
between the solutions of parabolic and hyperbolic (sub)diffusion equations even for relatively
large values of τ [14]. However, in some processes the non-zero parameter τ plays a crucial
role. The example is the diffusion in a system where boundary conditions are given by
functions quickly changing in time. Such a situation occurs in the electrochemical system
with (sub)diffusion impedance. As far as we know, the Cattaneo equation was used to
study electrochemical impedance only for a system where normal diffusion occurs [15, 16],
except our work [17] where the subdiffusion impedance was considered in a system with
fully absorbing wall. Articles published so far mostly concentrated on homogeneous systems,
however, a more complex system containing few diffusion layers was also studied in [18].

In this paper we present a theoretical foundation for studies of the subdiffusion impedance
using a hyperbolic equation. We apply two different hyperbolic Cattaneo equations with the
fractional time derivatives to model the subdiffusion impedance of a homogeneous sample of
finite thickness, where the boundary condition at the sample surface is assumed as a linear
combination of flux and concentration. We find an influence of the parameters α and τ on the
final formula describing the impedance of the subdiffusive medium, particularly for high and
for low ac-voltage frequency. We also briefly discuss the properties of the hyperbolic Cattaneo
equations which we use.

2. The generalized Cattaneo equation

The phenomenological derivation of the Cattaneo equation in the case of normal diffusion is
based on the assumption that the flux of the particles J is given by the following formula:

J (x, t) + τ
∂J (x, t)

∂t
= −D

∂C(x, t)

∂x
, (2)

with a positive parameter τ . The case of τ = 0 corresponds to the classical Fick law.
Combining (2) with the continuity equation

∂C(x, t)

∂t
= −∂J (x, t)

∂x
, (3)

one obtains the hyperbolic normal diffusion

∂C(x, t)

∂t
+ τ

∂2C(x, t)

∂t2
= D

∂2C(x, t)

∂x2
. (4)
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Equation (2) can be treated as an approximation of the following equation in the limit of small
τ :

J (x, t + τ) = −D
∂C(x, t)

∂x
.

Thus, the hyperbolic subdiffusion can be interpreted as a process where the flux J is not
generated by the concentration gradient instantaneously (as in the process described by the
parabolic diffusion equation), but it is delayed in time by τ [12], what provides the finite
propagation velocity of the particles v = √

D/τ .
The phenomenological derivation of the hyperbolic subdiffusion equation is often

performed by introducing the time derivative of the fractional order into (4). This procedure
leads to different hyperbolic subdiffusion equations which are not equivalent to one another.
Such a procedure should be treated as a mathematical trick only unless the physical model
whereby the subdiffusion equation can be obtained is found. In [13] two different hyperbolic
subdiffusion equations which have clear physical interpretation were proposed. In the
following we use both of them to model the subdiffusive impedance process. The first
model (in the following denoted as ‘model A’) utilizes the equation

τ
∂2C(x, t)

∂t2
+

∂C(x, t)

∂t
= Dα

∂1−α

∂t1−α

∂2C(x, t)

∂x2
. (5)

In order to find the physical interpretation of equation (5) we go back to the parabolic
subdiffusion equation (1). This equation can be derived from the continuous time random
walk formalism where the random walk of a transported particle is considered. Its walk is
characterized by the distribution of step lengths λ(x) and the distribution of waiting times
to take the next step ϕ(t). To obtain the subdiffusion equation one assumes that λ(x) has a
finite dispersion σ whereas ϕ(t) provides an infinite mean value. (1) can be also obtained in
a phenomenological way by setting the subdiffusive flux

J (x, t) = −Dα

∂1−α

∂t1−α

∂C(x, t)

∂x
(6)

to the continuity equation (3). Let us note that the presence of fractional derivative in (5) and
(6) is physically well motivated [1]. To obtain the hyperbolic subdiffusion equation, similar
as for the normal diffusion case, one assumes that the flux is delayed in time by τ

J (x, t + τ) = −Dα

∂1−α

∂t1−α

∂C(x, t)

∂x
. (7)

Assuming that τ � t and keeping linear terms with respect to τ in the series expansion of
left-hand side of (7), we get

J (x, t) + τ
∂J (x, t)

∂t
= −Dα

∂1−α

∂t1−α

∂C(x, t)

∂x
. (8)

Combining (8) with the continuity equation (3), one obtains the generalized Cattaneo
equation (5). Let us note that in this model the parameters Dα and τ are treated as independent
of each other. The parabolic subdiffusion equation can be obtained by putting τ = 0 in (5).

The second hyperbolic subdiffusion equation (which in our paper is used in ‘model B’)
presented in [13] is

∂C(x, t)

∂t
+ τα ∂1+αC(x, t)

∂t1+α
= Dα

∂1−α

∂t1−α

∂2C(x, t)

∂x2
. (9)

Equation (9) can be derived within the continuous time random walk scheme, where the flux
is given in terms of Laplace and Fourier transforms as [13]

Ĵ (k, s) = −2i�
s

1 − ϕ(s)
Ĉ(k, s)

∫ ∞

0
dx ψ̂(x, s) sin(kx),
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where ψ(x, t) is the distribution of step lengths and waiting times between steps and � is a
microscopic length scale necessary to obtain the correct dimension for the flux. In our paper
we denote the Fourier transform by F{f (x)} = ∫ ∞

−∞ eikxf (x) dx = f̂ (k) and the Laplace one
by L{g(t)} = ∫ ∞

0 e−sxg(t) dt = ĝ(s). Assuming that

ψ(x, t) = 1√
4σ 2π

exp

(
− x2

4σ 2

)
ϕ(t),

where ϕ(t) is defined by its Laplace transform

ϕ̂(s) = e−θαsα

,

(its inverse Laplace transform in the long time limit reads ϕ(t) = θα/t1+α�(−α)), the
following formula:

esαθα − 1

sαθα
Ĵ (k, s) = −ikDαs1−αĈ(k, s) (10)

was derived in the limit of small k and s [13], where the subdiffusion coefficient is defined as

Dα = σ 2

θα
. (11)

Putting

esαθα ≈ 1 + sαθα +
s2αθ2α

2
(12)

into (10) and using the formula L−1(sαĝ(s)) = ∂αg(t)/∂tα (0 < α < 1) one gets

J (x, t) + τα ∂αJ (x, t)

∂tα
= −Dα

∂1−α

∂t1−α

∂C(x, t)

∂x
, (13)

where

τ = θ

21/α
. (14)

Combining (13) with the continuity equation (3) one obtains (9). From (11) and (14) we see
that the subdiffusion coefficient Dα is controlled by the parameter τ and reads

Dα = σ 2

2τα
. (15)

We find the difficulties in the interpretation of equation (9). The parabolic subdiffusion
equation can be obtained from the hyperbolic one by putting τ = 0 in (9). On the other hand
vanishing of τ provides the infinite speed of propagation as it should be. However, due to (15),
for τ = 0 one gets the infinite value of the subdiffusion coefficient. We note that the only way
to obtain the parabolic subdiffusion equation within this model is to neglect the last term in
right–hand side of (12). Then, we obtain the parabolic subdiffusion equation (with the infinite
speed of propagation) under the condition that τ is finite. Despite the objections concerning
(9) in the following we apply both equations (5) and (9) to describe the subdiffusion in the
system under consideration.

3. The system

Let us assume that at x = 0 there is the oscillating overvoltage η(t) = E sin(ωt) which causes
the oscillation of the concentration on the surface layer according to the formula

η|x=0 (t) =
(

dη

dC

)
eq

C(0, t), (16)

4
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x=0 x=L

(t)=Esin( t) absorbing

wall

diffusion
layer

Figure 1. The system under considerations, η denotes the overvoltage, E—its amplitude.

where eq denotes a derivative computed in the local equilibrium. Thus, we have

C(0, t) = C0 sin(ωt),

where C0 = RWqAE and RW = 1
qA

( dη

dC

)
eq

. The conduction current I (t) at x = 0 corresponds
to the flux of diffusing particles J (0, t)

I (t) = qAJ(0, t), (17)

where q is the charge of the particle and A is the area of the sample surface. The surface
located at x = L can be treated as fully absorbing, partially absorbing or fully reflecting wall
(figure 1). Thus, the second boundary condition, fixed at the wall x = L, can be chosen in
different ways depending on the properties of the wall. Usually, for the system described by
the parabolic (sub)diffusion equation one can adopt the boundary conditions as follows:

• For the fully absorbing wall one gets [19]

C(L, t) = 0.

• For the fully reflecting wall there is [19]

J (L, t) = 0.

• For the partially absorbing wall the particle absorbed by the wall cannot return to the
system and the boundary condition is given by [20, 21]

J (L, t) = κC(L, t). (18)

The boundary condition for the fully absorbing or fully reflecting wall was studied in majority
works (see for example [9, 22]); however, the radiation boundary condition (18) was also used
[15, 23, 24]. In this work we assume that the boundary condition at x = L is given in a general
form and is a linear combination of the flux and concentration, where the flux is delayed in
time by τ with respect to the concentration. So, the boundary condition is

aLJ (L, t + τ) + bLC(L, t) = 0. (19)

4. Diffusion impedance

The impedance of the electrochemical system Z(iω) can be defined as its response to a voltage
or current perturbation from a steady-state situation [22, 25]

Z(iω) = η̂(iω)

Î (iω)
, (20)

where η̂(iω) and Î (iω) are the Laplace transforms of the overvoltage and current perturbation,
ω is the angular frequency. A plot of the real and imaginary parts of the impedance in the

5
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complex plane (Re Z,−Im Z) as the angular frequency (treated as a parameter) is swept over
a given range is called the Nyquist plot. From (16), (17) and (20) one obtains the relation

Z(iω) = RW
Ĉ(0, iω)

Ĵ (0, iω)
. (21)

The impedance of the diffusion layer is called the Warburg impedance. For the layer of
the infinite thickness the impedance is defined as

Z(iω) = R√
iω

= R√
2ω

(1 − i), (22)

where R is the diffusion resistance. On the Nyquist plot the Warburg impedance is presented
by the straight half-line with the slope angle π/4 passing through the origin of coordinates. In
real systems the diffusion layer has a finite thickness. Let us assume, that the diffusion layer
is bordered by planes localized at x = 0 and x = L. The perturbation of the voltage is applied
to the medium at x = 0. The characteristic angular frequency is defined as

ωd ≡ D

L2
, (23)

where D is the diffusion coefficient. The frequency (23) is proportional to the inverse of the
average time necessary for an ion to cross the sample thickness. When ω 
 ωd the size of
the sample plays no role in the ion diffusion and the impedance is the Warburg impedance
(22). However, for a low frequency the ions can be absorbed by the opposite wall before they
change direction of their movement.

5. Subdiffusion impedance

We assume that the transport process is described by the generalized Cattaneo equation with
the following initial conditions:

C(x, 0) = ∂C(x, t)

∂t

∣∣∣∣
t=0

= 0. (24)

Below we consider two models. First model (‘model A’) utilizes (5), the second one
(‘model B’) uses (9) to describe subdiffusion in the considered system.

5.1. Model A

The Laplace transform of (5) for the initial conditions (24) is

sĈ(x, s) + τs2Ĉ(x, s) = Dαs1−α ∂2Ĉ(x, s)

∂x2
. (25)

The general solution of equation (25) reads

Ĉ(x, s) = B1 exp[γA(s)x] + B2 exp[−γA(s)x], (26)

where

γA(s) = sα/2

√
Dα

√
1 + τs. (27)

The Laplace transform of the flux is

Ĵ A(x, s) = −Dα

s1−α

1 + τs

dĈ(x, s)

dx
. (28)

6
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Combining (19), (21) and (26)–(28) we obtain

ZA(s) = RW
1

λA(s)

[
bL sinh(γA(s)L) − aLλA(s) cosh(γA(s)L)

bL cosh(γA(s)L) − aLλA(s) sinh(γA(s)L)

]
, (29)

where

λA(s) = s1−α/2

√
Dα

1 + τs
. (30)

For the layer with infinite thickness (L → ∞) the impedance (29) has the following form:

ZA(iω) = RW

√
1 + τ iω√

Dα(iω)1−α/2
. (31)

For τ = 0 and α = 1 equation (31) corresponds to the classical Warburg impedance [22]. For
subdiffusive systems the relation on the impedance (23) should be replaced by ωd ≡ (D/L2)1/α

[9].
When ω → ∞, a substantial influence of τ can be inferred from (27), (29) and (30). After

calculations we obtain

• For τ �= 0

ZA(iω) = RW
√

τ√
Dαω(1−α)/2

[
cos

(
π

1 − α

4

)
− i sin

(
π

1 − α

4

)]
, (32)

and the Nyquist plot of the impedance is a linear function passing through the origin of
coordinates with the angle slope φA given by

φA = π
1 − α

4
. (33)

Let us note that for 0 < α < 1 there is φA ∈ (0, π/4).
• For τ = 0

ZA(iω) = RW√
Dαω1−α/2

[
cos

(
π

1 − α/2

2

)
− i sin

(
π

1 − α/2

2

)]
,

thus,

φA = π
1 − α/2

2
, (34)

and φA ∈ (π/4, π/2).

For low ω one obtains

ZA(iω) = − RW

λA(iω)

[
aLλA(iω) − bLLγA(iω) + aLLλA(iω)γA(iω)

aLλA(iω) + bLLγA(iω) − aLLλA(iω)γA(iω)

]
. (35)

An analysis of (35) leads to the following conclusions. For ω → 0 and α ∈ (0, 1) the slope
of the plot is φA = π(1 − α)/2 when aL = 0 (for the partially or fully absorbing wall) and
φA = π/2 when bL = 0 (for reflecting wall). We note that for ω � 1/τ the terms which
contain the τ parameter can be neglected in the above formulae. Then, φA is independent
of τ .

Calculating Re Z and Im Z from (29) for s = iω we obtain the Nyquist plots
(figures 2–5) with several values of the parameters τ and α. Our calculations were done
for ω ∈ (10−1, 105), RW = 1, L = 1 and Dα = 1 (all quantities are in arbitrary units). For
larger values of ω the points on the plots are located near the origin and for larger τ the curves
are located near the Re Z-axis.

On figures 2 and 3 the plots for τ = 0 and τ = 0.01 are practically undistinguishable,
but for larger values of the subdiffusion parameter α these plots differ from each other. The

7
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Figure 2. The Nyquist plots for model A with α = 0.4 and for τ given in the legend; the additional
description is in the text.

Figure 3. The description is the same as in figure 2 but for α = 0.6.

plots suggest that the curves for different values of τ converge into one curve for very small
values of ω. For relatively large values of τ the Nyquist plots show ‘chaotic’ behavior, which
is stronger when α increases. Therefore, in the presented cases we did not consider values of
τ larger than that on plots in figures 2–3.

5.2. Model B

The Laplace transform of (9) for the initial conditions (24) is

sĈ(x, s) + ταs1+αĈ(x, s) = Ds1−α ∂2Ĉ(x, s)

∂x2
. (36)

8
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Figure 4. The case of model A with α = 0.8; the further description is the same as in figure 2.

Figure 5. The Nyquist plots for models A and B for the normal diffusion case (α = 1.0); the
further description is the same as in figure 2.

The general solution of equation (36) reads

Ĉ(x, s) = B1 exp[γB(s)x] + B2 exp[−γB(s)x], (37)

where

γB(s) = sα/2

√
Dα

√
1 + (τ s)α. (38)

The Laplace transform of the flux is

Ĵ B(x, s) = −Dα

s1−α

1 + (τ s)α

dĈ(x, s)

dx
. (39)

9
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Combining (19), (21) and (37)–(39) we obtain

ZB(s) = RW
1

λB(s)

[
bL sinh(γB(s)L) − aLλB(s) cosh(γB(s)L)

bL cosh(γB(s)L) − aLλB(s) sinh(γB(s)L)

]
, (40)

where

λB(s) = s1−α/2

√
Dα

1 + (τ s)α
. (41)

For the layer with the infinite thickness (L → ∞) the impedance (40) has the following form:

ZB(iω) = RW

√
1 + (iωτ)α√

Dα(iω)1−α/2
,

which for α = 1 is identical with ZA(iω) (see (31)).
When ω → ∞ from (38), (40) and (41) we obtain

• For τ �= 0

ZB(iω) = RW

ω1−α

√
τα

Dα

[
cos

(
π

1 − α

2

)
− i sin

(
π

1 − α

2

)]
, (42)

and the Nyquist plot of the impedance is a linear function passing through the origin of
coordinates with the angle slope φB given by

φB = π
1 − α

2
, (43)

thus, for 0 < α < 1 there is φB ∈ (0, π/2).

• For τ = 0

ZB(iω) = RW√
Dαω1−α/2

[
cos

(
π

1 − α/2

2

)
− i sin

(
π

1 − α/2

2

)]
,

so,

φB = π
1 − α/2

2
, (44)

and φB ∈ (π/4, π/2).

For low ω one obtains

ZB(iω) = − RW

λB(iω)

[
aLλB(iω) − bLLγB(iω) + aLLλB(iω)γB(iω)

aLλB(iω) + bLLγB(iω) − aLLλB(iω)γB(iω)

]
. (45)

An analysis of (45) leads to the following conclusions. For ω → 0 and α ∈ (0, 1), the slope
of the plot is φB = π(1 − α)/2 when aL = 0 (for the partially or fully absorbing wall) and
φB = (1 − 3α/4)π when bL = 0 (for reflecting wall). Similarly as in the model A, φB is
independent of τ .

The Nyquist plots obtained from (40) are presented in figures 6–8 for several values of the
parameters τ and α, where ω ∈ (10−1, 105), RW = 1, L = 1 and Dα = 1 (all quantities are
in arbitrary units). We add that for the case of α = 1 as well as for τ = 0 the plots obtained
from model A and model B are identical to each other.

10
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Figure 6. The Nyquist plots for model B with α = 0.4 and for τ given in the legend; the additional
description is in the text.

Figure 7. The description is the same as in figure 6 but for α = 0.6.

6. Final remarks

In our paper we consider two models of subdiffusive impedance, where the different hyperbolic
subdiffusion equations were taken into consideration. These equations are not equivalent
to each other and they have different physical meaning. Consequently, the subdiffusive
impedance formulae derived from these equations are not equivalent to each other as well.

The main results of our paper are equation (29) with the asymptotic formulae (32)–(35)
for model A and equation (40) with the asymptotic formulae (42)–(45) for model B. These
functions illustrated by the plots (figures 2–5) for model A and 5–8 for model B show the
following.

11
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Figure 8. The Nyquist plots for model B with α = 0.8; the further description is the same as in
figure 6.

For ω → ∞ the Nyquist plot is the linear function passing through the origin of
coordinates with the slope angle φA and φB, respectively, depending on the subdiffusion
parameter α and given by (33) and (34) for model A and by (43) and (44) for model B.
It is interesting that both φA and φB do not depend on the parameter τ explicitly, but the
dependence is ‘hidden’ and is manifested by the interval to which the parameter belongs. For
a given α ∈ (0, 1) and τ �= 0 φA = π(1 − α)/4 < π/4 and φB = π(1 − α)/2 < π/2, so,
φB = 2φA (see figure 9). For non-zero τ , φA as well as φB do not depend on τ and for all
values of φA and φB they are independent of the boundary conditions at x = L. For a given
α ∈ (0, 1) and τ = 0 φA = π(1 − α/2)/2 > π/4 and φB = π(1 − α/2)/2 > π/4. In this
case φA = φB. In this paper [24] the case of φ �= π/4 was interpreted somewhat differently,
mainly as a presence of so-called ‘constant phase element’ (CPE) in the system.

For relatively high ω and for τ �= 0 the Nyquist plots for both models show the ‘chaotic’
and ‘oscillating’ behavior, increasing with the increased τ and α parameters. The physical
interpretation of this fact can be as follows. Namely, the periodic changes of the concentration
at the surface x = 0 generated the flux which is delayed in time by τ with respect to the
concentration gradient. When the oscillations of the concentration are very rapid, the flux
does not keep up with the concentration changes, so the additional factor contributing to the
total impedance is created. The difficulties in movement of the ions increase when α decreases
causing a decrease in the flux. Thus, the parameter τ influences the transport process less
when α is smaller. Such a behavior is observed on the presented plots, where the curves
obtained for τ = 0 and for τ = 0.1 differ slightly from each other when α = 0.4 and α = 0.6,
but the difference is relatively large for α = 0.8 and α = 1. The ‘chaotic’ behavior for model
B is clearly smaller than for model A (see figures 2 and 6 or 3 and 7 or 4 and 8).

For low ω the plots are dependent on the boundary conditions. According to (35) and
(45), for fully reflecting wall and for ω � 1/τ one gets φA = π/2 for all values of α and
φB = (1 − 3α/4)π . For fully or partially permeable wall we observe that the plots for model
A as well as for model B become linear with φA,B = π(1 − α)/2.

As we mentioned in the introduction, there are a few methods for extracting the value of
subdiffusion parameter from experimental data. The considerations presented in this paper
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Figure 9. The comparison between models A and B for the subdiffusion parameters α given in
the legend, with τ = 0.1.

show that it is possible to determine the value of parameter of the system from the Nyquist
plots obtained experimentally. However, model A and model B give quite different results. It
seems that there is no experimental basis to judge which model should be used. On the basis
of our theoretical considerations we declare for model A because of the following reasons:

• as we discussed in section 2 the microscopic model B does not lead to the parabolic
subdiffusion equation with the infinity speed of propagation,

• in model B parameters Dα and τ are related to each other whereas in other formalisms
leading to the hyperbolic subdiffusion equation (see e.g. [26, 27]) these parameters are
treated as independent of each other.

The model A is free from the above objections. So, to extract the subdiffusion parameter
from the experimental data we use model A. In [8] there was studied lithium transport through
vanadium pentoxide xerogel film electrode. The authors found that φ = 32◦, it was interpreted
the results as the subdiffusive transport of the particles inside the electrode. Since φ < 45◦,
we deduce that the transport studied in [8] can be described by the Cattaneo equation with
non-zero parameter τ and with α = 0.38 (see (33)). Unfortunately, the value of the slope
angle is not sufficient to extract τ from experimental data. To find this parameter one should
perform more detailed studies where the parameter representation of the Nyquist plots is taken
into consideration.

For the system described by the parabolic subdiffusion equation (1) we obtain φ > π/4,
whereas φ < π/4 corresponds to the model with non-zero τ . We add that, to achieve the
latter situation, the subdiffusion equation different from (1) was included into the impedance
model [9]. Namely, it was assumed that the subdiffusion is described by one of the following
equations:

∂αC(x, t)

∂tα
= Dα

∂2C(x, t)

∂x2
, (46)

∂2−αC(x, t)

∂t2−α
= Dα

∂2C(x, t)

∂x2
, (47)

13



J. Phys. A: Math. Theor. 42 (2009) 055004 T Kosztołowicz and K D Lewandowska

when both of the equations contain the Riemann–Liouville fractional derivative. However,
physical meaning of equations (46) and (47) is rather unknown since they were derived only
in a phenomenological way, where the time derivative of natural order was replaced by the
fractional one in the continuity equation and/or in the Fick’s law. These equations were
not derived on the basis of a ‘microscopic’ model such as the continuous time random walk
formalism. We note that (1) is equivalent to (46) if in the latter one the Riemann–Liouville
fractional derivative is replaced by the Caputo derivative. In our paper we show that the slope
φ < π/4 is achieved from the model based on the hyperbolic subdiffusion equation.
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